
APPENDIX

VII. ADDITIONAL REAL WORLD RESULTS AND
ANALYSIS

A. Detailed Free Hand Motion Planning Results

In this section we perform additional analysis of the free
hand motion planning results from the main paper. We
include a more detailed version of the main result table
(Tab. III). In this table, we additionally include the average
(open loop) planning time per method and the average rate of
safety violations. Safety violations are defined to occur where
there are collisions, the robot hits its joint limits or there are
torque limit errors. The open loop planning time for neural
methods such as ours or MπNets involves simply measuring
the total time taken for rolling out the policy and test time
optimization (TTO). We find that sampling-based planners
in general never collide when executed. If they produce a
safety violation, it is only because they find a trajectory that
is infeasible for the robot to execute on the hardware, due to
joint or torque limit errors. Neural motion planning methods
have much higher collision rates, though Neural MP has a
significantly lower collision rate than MπNets, which we at-
tribute to test-time optimization pruning out bad trajectories.
We also note that not all collisions are created equal: some
are slight, lightly grazing the environment objects while still
achieving the goal, while others can be catastrophic, colliding
heavily into the environment. In general, we found that our
method tends to produce trajectories that may have slight
collisions, though most of these are pruned out by TTO.
With regards to planning time, MπNets is the fastest method,
as our method expends additional compute rolling out 100x
more trajectories and then selecting the best one using SDF-
based collision checking.

Bins (↑) Shelf (↑) Articulated (↑) Avg. Success Rate (↑) Avg. Planning Time (↓) Avg. Safety Viol. Rate (↓)
Sampling-based Planning:

AIT*-80s [10] 93.75 75 50.0 72.92 80 0
AIT*-10s (fast) [10] 75.0 37.5 25.0 45.83 10 2.1

Neural:

MπNets [42] 18.75 25.0 6.25 16.67 1.0 18.75

Ours 100 100 87.5 95.83 3.9 4.2

TABLE III: Neural MP performs best across tasks for free-hand
motion planning, demonstrating greater improvement as the task
complexity grows.

B. Detailed In-hand Motion Planning Results

In this section, we extend the in-hand results shown in the
main paper with additional baselines (AIT*-80s, AIT*-10s
and MπNets). For this evaluation (see Tab. IV, we consider
two of the four in-hand motion planning objects, namely
joystick and book. We find sampling-based methods are able
to perform in-hand motion planning quite well, matching
the performance of our base policy as well as our method
without Objaverse data. We also see that MπNets is unable
to perform in-hand motion planning on any of the evaluated
tasks. This is likely because that network was not trained on
data with objects in-hand, demonstrating the importance of
including in-hand data when training neural motion planners.
Finally, there is a significant gap in performance between our
method with and without test-time optimization; pruning out

colliding trajectories at test time is crucial for achieving high
success rates on motion planning tasks.

Book (↑) Joystick (↑) Avg. Success Rate (↑) Avg. Planning Time (↓) Avg. Safety Viol. Rate (↓)
Sampling-based Planning:

AIT*-80s [10] 50 50 50 80 0
AIT*-10s (fast) [10] 25 50 37.5 10 0

Neural:

MπNets [42] 0 0 0 1 37.5

Ours:

Ours (no TTO) 25 75 50 0.9 50
Ours (no Objaverse) 50 50 50 3.9 50
Ours 100 75 87.5 3.9 12.5

TABLE IV: Neural MP performs best across tasks for in-hand
motion planning, demonstrating greater improvement as the in-hand
object becomes more challenging.

C. Test-time Optimization Analysis

Fig. 5: Test-time Optimization Analysis For the Bins Scene 1
task, we plot the number of points in collision across 100 sampled
trajectories from the model. 25% of the trajectories are completely
collision free and we select a trajectory execute from that subset.

To analyze what the test-time optimization procedure is
doing, we first note that the base policy can sometimes
produce slight collisions with the environment due to the
imprecision of regression. As a result, when sampling from
the policy, it is often likely that the policy will lightly graze
objects which will count as failures when motion planning.
We visualize a set of trajectories sampled from the policy
here on our website for the real-world bins task. Observe
that for some of the trajectories, the policy slightly intersects
with the bin which would cause it to fail when executing in
the real world, while for others it simply passes over the bin
completely without colliding. We estimate the robot-scene
intersection of all of these trajectories by comparing the robot
SDF to the scene point-cloud and plot the range of values
in Fig. 5. We observe that 25% of trajectories do not collide
with the environment, and we select for those. In principle,
one could further optimize by selecting the trajectory that is
furthest from the scene (using the SDF). In practice, we did
not find this necessary and that selecting the first trajectory
among those with the fewest expected collisions performed
quite well in our experiments.

VIII. ABLATIONS

Loss Type Ablation

M
o

t
io

n
 P

la
n

n
in

g
 S

u
c
c
e

s
s
 R

a
t
e

0

25

50

75

100

L1 Loss L2 Loss PointMatch GMM (Ours)

Table 1

L1 Loss L2 Loss PointMatch GMM (Ours)

82 87 70 94

RNN History Length Ablation

0

25

50

75

100

2 (ours) 4 8 16

Table 1-1

2 (ours) 4 8 16

94 93 68 15

Encoder size Ablation

91

92

93

93

94

Small (ours) Medium Large

Table 1-1-1

Small (ours) Medium Large

94 93 92

Observation Component Ablation

0

25

50

75

100

None q g q and g (Ours)

Table 1-2

None q g q and g (Ours)

19 29 32 94

1

Fig. 6: Ablation Results We evaluate four different components
of Neural MP, loss type (left), observation components (middle
left), encoder sizes (middle right), and RNN history length (right).
We validate that our design decisions produce measurable improve-
ments in motion planning success rates.

We run additional ablations analyzing components of our
method in simulation using a subset of our dataset (100K
trajectories) and include additional details for experiments
discussed in the main paper.

Loss Types For training objective, we evaluate 4 different
options: GMM log likelihood (ours), MSE loss, L1 loss,
and PointMatch loss (MπNets). PointMatch loss involves
computing the l2 distance between the goal and the pre-
dicted end-effector pose using 1024 key-points. We plot the
results on held out scenes in Fig. 6. We find that GMM
(ours) outperforms L2 loss, L1 loss, and PointMatch Loss
(MπNets) by (7%, 12%, and 24%) respectively. One reason
this may be the case is that sampling-based motion planners
produce highly multi-modal trajectories: they can output
entirely different trajectories for the same start and goal
pair when sampled multiple times. Since Gaussian Mixture
Models are generally more capable of capturing multi-modal
distributions, they can hence fit our dataset well. At the same
time, the PointMatch [42] loss struggles significantly on our
data: it cannot distinguish between 0 and 180 degree flipped
end-effector orientations, resulting in many failures due to
incorrect end-effector orientations.

Observation Components We evaluate whether our
choice of observation components impacts the Neural MP’s
performance. In theory, the network should be able to learn as
well from the point-cloud alone as when the proprioception
is included, as the point-cloud contains a densely sampled
point-cloud of the current and goal robot configurations.
However, in practice, we find that this is not the case.
Instead, removing either q or g or both severely harms
performance as seen in Fig. 6. We hypothesize that including
the proprioception provides a richer signal for the correct
delta action to take.

RNN History Length In our experiments, we chose
a history length of 2 for the RNN, after sweeping over
values of 2, 4, 8, 16 based on performance. From Fig. 6
we see history length 2 achieves the best performance at
94%, while using lengths 4, 8 and 16 achieve progressively
decreasing success rates (92.67, 68, 14.67). One possible
reason for this is that since point-clouds are already very
dense representations that cover the scene quite well, the
partial observability during training time is fairly low. A
shorter history length also leads to faster training, due to
smaller batches and fewer RNN unrolling steps.

Encoder Size Finally, we briefly evaluate whether en-
coder size is important when training large-scale neural
motion planners. We train 3 different size models: small
(4M params), medium (8M params) and large (16M params).
From the results in Fig. 6, we find that the encoder size
does not affect performance by a significant margin (94%,
93%, 92%) respectively and that the smallest model in fact
performs best. Based on these results, we opt to use the
small, 4M param model in our experiments.

Neural MP-MLP Neural MP-LSTM Neural MP-Transformer Neural MP-ACT

65.0 82.5 85.0 47.5

TABLE V: Ablation of different architecture choices for the action
decoder. We find that LSTMs and Transformers comparably while
LSTMs boast faster inference times.

Architecture Ablation In this experiment, we evaluate
how different sequence modelling methods (Transformers
and ACT [54]) and simpler action decoders such as MLPs
compare against our design choice of using an LSTM. All
methods are trained with the same dataset (of 1M trajecto-
ries), with the same encoder and GMM output distribution
(with the exception of ACT which uses an L1 loss as per
the ACT paper). We then evaluate them on held out motion
planning tasks (Fig. V which are replicas of our real-world
tasks (Bins and Shelf). We note several findings: 1) ACT
performs poorly, largely due to its design choice of using
an L1 loss which prevents it from handling planner multi-
modality effectively, 2) Neural MP with an MLP action
decoder also performs significantly worse than LSTMs and
Transformers, as it is unable to use history information
effectively to reason about the next action 3) Transformers
and LSTMs perform similarly, with the Transformer variant
performing marginally better, but with significantly slower
inference time (2x). Hence we opt to use LSTM policies
for our experimental evaluation, but certainly our method is
amenable to any choice of sequence modeling architecture
that performs well and has fast inference.

Neural MP-MotionBenchMaker Neural MP-MπNets Neural MP

0 32.5 82.5

TABLE VI: Comparing different methods for generating datasets
for motion planning. We find that policies trained on our data
generalize best to held out scenes.

Dataset Ablation Finally, we evaluate the quality of
different dataset generation approaches for producing gen-
eralist neural motion planners. We do so by training policies
on three different datasets (Neural MP, MπNets [42], and
MotionBenchMaker [40]) and evaluated on held out motion
planning tasks in simulation. We train each model to conver-
gence for 10K epochs and then execute trajectories on two
held out tasks that mirror our real world tasks: RealBins and
RealShelf. For fairness, we do not include any Objaverse
meshes in these tasks, since MPiNets and MotionBench-
Maker only have primitive objects. Still, we find that our
dataset performs best by a wide margin (Tab. VI). In general,

we found that policies trained on MotionBenchMaker do not
generalize well. As mentioned in the related works section,
this dataset lacks the realism and diversity necessary to train
policies that can generalize to held out motion planning
scenes.

IX. PROCEDURAL SCENE GENERATION DETAILS

In this section we provide additional details regarding the
data generation methods we develop for training large scale
neural motion planners.

A. Procedural Scene Generation

We formalize our procedural scene generation as a compo-
sition of randomly generated parameteric assets and sampled
Objaverse meshes in Alg. 1

Objaverse sampling details The Objaverse are sampled
in the task-relevant sampling location of the programmatic
asset(s) in the scene, such as between shelf rungs, inside
cubbies or within cabinets. Similar to the programmatic
assets, these Objaverse assets are also sampled from a
category generator Xob j(p). Here the parameter p specifies
the size, position, orientation of the object as well as task-
relevant sampling location of the object in the scene, such as
between shelf rungs, inside cubbies or within cabinets. As
discussed in the main paper, we propose an approach that
iteratively adds assets to a scene by adjusting their position
using the effective collision normal vector, computed from
the existing assets in the scene. We detail the steps for doing
this in Alg. 1.

B. Motion Planner Experts

We use three techniques to improve the data generation
throughput when imitating motion planners at scale.

Hindsight Relabeling Tight-space to tight-space problems
are the most challenging, particularly for sampling-based
planners, often requiring significant planning time (up to
120 seconds) for the planner to find a solution. For some
problems, the expert planner is unable to find an exact
solution and instead produces approximate solutions. Instead
of discarding these, note that we use a goal-conditioned
imitation learning framework, where we can simply execute
the trajectories in simulation and relabel the observed final
state as the new goal.

Reversibility We further improve our data generation
throughput by observing that since motion planners inher-
ently produce collision-free paths, the process is reversible,
at least in simulation. This allows us to double our data
throughput by reversing expert trajectories and re-calculating
delta actions accordingly. Additionally, for a neural motion
planner to be useful for practical manipulation tasks, it must
be able to generate collision free plans for the robot even
when it is holding objects. To enable such functionality, we
augment our data generation process with trajectories where
objects are spawned between the grippers of the robot end
effector. There are transformed along with the end-effector
during planning in simulation. We consider the object as
part of the robot for collision checking and for the sake of

our visual observations. In order to handle diverse objects
that the robot might have to move with at inference time,
we perform significant randomization of the in-hand object
that we spawn in simulation. Specifically, we sample this
object from the primitive categories of boxes, cylinders or
spheres, or even from Objaverse meshes of everyday articles.
We randomize the scale of the object between 3 and 30 cm
along the longest dimension, and sample random starting
locations within a 5cm cube around the end-effector mid-
point between grippers.

Smoothing Importantly, we found that naively imitating
the output of the planner performs poorly in practice as the
planner output is not well suited for learning. Specifically,
plans produced by AIT* often result in way-points that
are far apart, creating large action jumps and sparse data
coverage, making it difficult to for networks to fit the data. To
address this issue, we perform smoothing using cubic spline
interpolation while enforcing velocity and acceleration limits.
The implementation from MπNets performs well in practice,
smoothing to a fixed 50 timesteps with a max spacing of 0.1
radians. In general, we found that smoothing is crucial for
learning performance as it ensures the maximum action size
is small and thus easier for the network to fit to.

C. Data Pipeline Parameters and Compute

In Table VII, we provide a detailed list of all the param-
eters used in generating the data to train our model.

Compute In order to collect a vast data of motion planning
trajectories, we parallelize data collection across a cluster of
2K CPUs. It takes approximately 3.5 days to collect 1M
trajectories.

X. NETWORK TRAINING DETAILS

We first describe additional details regarding our neural
policy, and then discuss how it is trained. Following the
design decisions of MπNets [42], we construct a segmented
point-cloud for the robot, consisting of the robot point-cloud,
the target goal robot point-cloud and the obstacle point-
cloud. Here we note two key differences from MπNets: 1)
our network conditioned on the target joint angles, while
MπNets only does so through the segmented point-cloud, 2)
we condition on the target joint angles, not end-effector pose,
decisions that we found improved adherence to the overall
target configuration. For in-hand motion planning, we extend
this representation by considering the object in-hand as part
of the robot for the purpose of segmentation.

We include a hyper-parameter list for our neural motion
planner in Table VIII. We train a 20M parameter neural
network across our dataset of 1M trajectories. The Point-
Net++ encoder is 4M parameters and outputs an embedding
of dimension 1024. We concatenate this embedding with
the encoded qt and g vectors and pass this into the 16M
parameter LSTM decoder. The decoder outputs weights,
means, and standard deviations of the 5 GMM modes. We
then train the model with negative log likelihood loss for
4.5M gradient steps, which takes 2 days on a 4090 GPU
with batch size of 16.

Hyper-parameter Value
General Motion Planning Parameters

collision checking distance 1cm
tight space configuration ratio 50%
dataset size 1M trajectories
minimum motion planning time 20s
maximum motion planning time 80s

General Obstacle Parameters
in hand object ratio 0.5
in hand object size range [[0.03, 0.03, 0.03], [0.3, 0.3, 0.3]]
in hand object xyz range [[-0.05, -0.05, 0.], [0.05, 0.05, 0.05]]
min obstacle size 0.1
max obstacle size 0.3
table dim ranges [[0.6, 1], [1.0, 1.5], [0.05, 0.15]]
table height range [-0.3, 0.3]
num shelves range [0, 3]
num open boxes range [0, 3]
num cubbys range [0, 1]
num microwaves range [0, 3]
num dishwashers range [0, 3]
num cabinets range [0, 3]

Objaverse Mesh Parameters
scale range [0.2, 0.4]
x pos range [0.2, 0.4]
y pos range [-0.4, 0.4]
number of mesh objects per programmatic asset [0, 3]
number of mesh objects on the table [0, 5]

Table Parameters
width range [0.8, 1.2]
depth range [0.4, 0.6]
height range [0.35, 0.5]
thickness range [0.03, 0.07]
leg thickness range [0.03, 0.07]
leg margin range [0.05, 0.15]
position range [[0, 0.8], [-0.6, 0.6]]
z axis rotation range [0, 3.14]

Shelf Parameters
width range [0.5, 1]
depth range [0.2, 0.5]
height range [0.5, 1.2]
num boards range [3, 5]
board thickness range [0.02, 0.05]
backboard thickness range [0.0, 0.05]
num vertical boards range [0, 3]
num side columns range [0, 4]
column thickness range [0.02, 0.05]
position range [[0, 0.8], [-0.6, 0.6]]
z axis rotation range [-1.57, 0]

Open Box Parameters
width range [0.2, 0.7]
depth range [0.2, 0.7]
height range [0.3, 0.5]
thickness range [0.02, 0.06]
front scale range [0.6, 1]
position range [[0.0, 0.8], [-0.6, 0.6]]
z axis rotation range [-1.57, 0.0]

Hyper-parameter Value
Cubby Parameters

cubby left range [0.4, 0.1]
cubby right range [-0.4, 0.1]
cubby top range [0.85, 0.35]
cubby bottom range [0.0, 0.1]
cubby front range [0.8, 0.1]
cubby width range [0.35, 0.2]
cubby horizontal middle board z axis shift range [0.45, 0.1]
cubby vertical middle board y axis shift range [0.0, 0.1]
board thickness range [0.02, 0.01]
external rotation range [0, 1.57]
internal rotation range [0, 0.5]
num shelves range [3, 5]

Microwave Parameters
width range [0.3, 0.6]
depth range [0.3, 0.6]
height range [0.3, 0.6]
thickness range [0.01, 0.02]
display panel width range [0.05, 0.15]
distance range [0.5, 0.8]
external z axis rotation range [-2.36, -0.79]
internal z axis rotation range [-0.15, 0.15]

Dishwasher Parameters
width range [0.4, 0.6]
depth range [0.3, 0.4]
height range [0.5, 0.7]
control panel height range [0.1, 0.2]
foot panel height range [0.1, 0.2]
wall thickness range [0.01, 0.02]
opening angle range [0.5, 1.57]
distance range [0.6, 1.0]
external z axis rotation range [-2.36, -0.79]
internal z axis rotation range [-0.15, 0.15]

Cabinet Parameters
width range [0.5, 0.8]
depth range [0.25, 0.4]
height range [0.6, 1.0]
wall thickness range [0.01, 0.02]
left opening angle range [0.7, 1.57]
right opening angle range [0.7, 1.57]
distance range [0.6, 1.0]
external z axis rotation range [-2.36, -0.79]
internal z axis rotation range [-0.15, 0.15]

TABLE VII: Data Generation Hyper-parameters We provide a detailed list of hyper-parameters used to procedurally generate a vast
variety of scenes in simulation.

Hyper-parameter Value
PointNet++ Architecture PointnetSAModule(

npoint=128,
radius=0.05,
nsample=64,
mlp=[1, 64, 64, 64],

)
PointnetSAModule(

npoint=64,
radius=0.3,
nsample=64,
mlp=[64, 128, 128, 256],

)
PointnetSAModule(

nsample=64,
mlp=[256, 512, 512],

)
MLP(

Linear(512, 2048),
GroupNorm(16, 2048),
LeakyReLU,
Linear(2048, 1024),
GroupNorm(16, 1024),
LeakyReLU,
Linear(1024, 1024)

)
LSTM 1024 hidden dim, 2 layers
Inputs qt , g, PCDt
Batch Size 16
Learning Rate 0.0001
GMM 5 modes
Sequence Length (seq length) 2

Point Cloud Parameters
Number of Robot / Goal Point-cloud Points 2048
Number of Obstacle Point-cloud Points 4096

TABLE VIII: Hyper-parameters for the model

Algorithm 2 Open-Loop Execution of Neural MP

1: Input: Neural MP πθ , segmentor S , initial angles q0,
scene point-cloud PCD f ull , goal g, horizon H

2: Output: Executed trajectory on the robot
3: Initialize: Timestep t← 0
4: Initialize: Trajectory τ ←{}
5: PCD0←S (PCD f ull)∪PCDq0 ∪PCDg
6: while goal g not reached & t < H do
7: at ∼ πθ (qt−1,PCDt−1,g)
8: qt ← qt−1 +at
9: PCDt ← (PCDt1 \PCDqt−1)∪PCDqt

10: t← t +1
11: τ ← τ +at
12: end while
13: Execute the τ open loop on the robot.

Fig. 7: We visualize the spherical representation on the left and
overlay it on the robot mesh on the right.

XI. REAL WORLD SETUP DETAILS

In this section, we describe our real world robot setup and
tasks in detail and perform analysis on the perception used
for operating our policies.

A. Real Robot Setup

Hardware For all of our experiments, we use a Franka
Emika Panda Robot, which is a 7 degree of freedom manip-
ulator arm. We control the robot using the manimo library
(https://github.com/AGI-Labs/manimo) and perform all of
experiments using their joint position controller with the
default PD gains. The robot is mounted to a fixed base
pedestal behind a desk of size .762m by 1.22m with variable
height. For sensing, we use four extrinsically calibrated depth
cameras, Intel Realsense 435 / 435i, placed around the scene
in order to accurately capture the environment. We project
the depth maps from each camera into 3D and combine the
individual point-clouds into a single scene representation.
We then post-process the point-cloud by cropping it to the
workspace, filtering outliers and denoising, and sub-sampling
a set of 4096 points. This processed point-cloud is then used
as input to the policy.

Representation Collision Checking and Segmentation
In order to perform real world collision checking and robot
point-cloud segmentation, we require a representation of
the robot to check intersections with the scene (collision

checking) and to filter out robot points from the scene point-
cloud (segmentation). While the robot mesh is the ideal
candidate for these operations, it is far too slow to run in
real time. Instead, we approximate the robot mesh as spheres
(visualized in Fig. 7) as we found this performs well in
practice while operating an order of magnitude faster. We use
56 spheres in total to approximate the links of the robot as
well as the end-effector and gripper. These have radii ranging
from 2cm to 10cm and are defined relative to the center
of mass of the link. This representation is a conservative
one: it encapsulates the robot mesh, which is desirable for
segmentation as this helps account for sensing errors which
would place robot points outside of the robot mesh.

Robot Segmentation In order to perform robot segmen-
tation in the real world, we use the spherical representation
to filter out robot points in the scene, so only the obstacle
point-cloud remains. Doing so requires computing the Signed
Distance Function (SDF) of the robot representation and
then checking the scene point-cloud against it, removing
points from the point-cloud in which SDF value is less
than threshold ε . For the spherical representation, the SDF
computation is efficient: for a sphere with center C and
radius r, the SDF of point x is simply ||x−C||2 − r. In
our experiments, we use a threshold ε of 1cm. We then
replace the removed points with points sampled from the
robot mesh of the robot. This is done by pre-sampling a robot
point-cloud from the robot mesh at the default configuration,
then performing forward kinematics using the current joint
angles qt and transforming the robot point-cloud accordingly.
Replacing the real robot point-cloud with this sampled point-
cloud ensures that the only difference between sim and real
is the obstacle point-cloud.

Real-world Collision Checking Given the SDF, collision
checking is also straightforward, we denote the robot in
collision if any point in the scene point-cloud (this is after
robot segmentation) has SDF value less than 1cm. Note this
means that first state is by definition collision free. Also, this
technique will not hold if performing closed loop planning,
in that case this method would always denote the state as
collision free as the points with SDF value less than 1cm
would be segmented out for each intermediate point-cloud.

Open Loop Deployment For open-loop execution of
neural motion planners, we execute the following steps: 1)
generate the segmented point-cloud at the first frame, 2)
predict the next trajectory way-point by computing a forward
pass through the network and sampling an action, 3) update
the current robot point-cloud with mesh-sampled point-cloud
at the predicted way-point, and 4) repeat until goal reaching
success or maximum rollout length is reached. The entire
trajectory is then executed on the robot after the rollout.
Please see Alg. 2 for a more detailed description of our open-
loop deployment method.

B. Tasks

Bins This task requires the neural planner to perform
collision avoidance when moving in-between, around and
inside two different industrial bins pictured in the first row of

https://github.com/AGI-Labs/manimo

Fig. 9. We randomize the position and orientation of the bins
over the table and include the following objects as additional
obstacles for the robot to avoid: toaster, doll, basketball, bin
cap, and white box. The small bin is of size 70cm x 50cm
x 25cm. The larger bin is of size 70cm x 50cm x 37cm.
The bins are placed at two sides of the table. Between tasks,
we randomize the orientation of the bins between 0 and 45
degrees and we swap the bin ordering (which bin is on the
left vs. the right). The bins are placed 45cm in front of the
robot, and shifted 60cm left/right.

Shelf This task tests the agent’s ability to handle horizontal
obstacles (the rungs of the shelf) while maneuvering in
tighter spaces (row two in Fig. 9). We randomize the size of
the shelf (by changing the number of layers in the shelf from
3 to 2) as well as the position and orientation (anywhere
at least .8m away from the robot) with 0 or 30 degrees
orientation. The obstacles for this task include the toaster,
basketball, baskets, an amazon box and an action figure
which increase the difficulty. The shelf obstacle itself is of
size 35cm x 80cm x 95cm.

Articulated We extend our evaluation to a more complex
primary obstacle, the cabinet, which contains one drawer and
two doors and tight internal spaces with small cubby holes
(row three of Fig. 9). We randomize the position of the entire
cabinet over the table, the joint positions of the drawer and
doors and the sizes of the cubby holes. The obstacles for
this task are xbox controller box, gpu, action figure, food
toy, books and board game box. The size of the cabinet is
40cm x 75cm x 80cm. The size of the top drawer is 30cm
x 65cm x 12cm. The size of the cubbies is 35cm x 35cm x
25cm. The drawer has an opening range of 0-30cm and the
doors open between 0 and 180 degrees.

In-Hand Motion Planning In this task (shown in row four
of Fig. 9), the planner needs to reason about collisions with
not only the robot and the environment, but the held object
too. We initialize the robot with an object grasped in-hand
and run motion planning to reach a target configuration. For
this task, we fix the obstacle (shelf) and its position (directly
80cm in front of the robot), instead randomizing across in-
hand objects and configurations. We select four objects that
vary significantly in size and shape: Xbox controller (18cm x
15cm x 8cm), book (17cm x 23cm x 5cm), toy sword (65cm
x 10cm x 2cm), and board game (25cm x 25cm x 6cm).
For this evaluation, we assume the object is already grasped
by the robot, and the robot must just move with the object
in-hand while maintaining its grasp.

C. Perception Visualization and Analysis

We compare point-clouds from simulation and the real
world for the Bins and Shelf task and analyze their proper-
ties. We replicate Bins Scene 4 and Shelf Scene 1 in simula-
tion: simply measure the dimensions and positions of the real
world objects and set those dimensions in simulation using
the OpenBox and Shelf procedural assets. As seen in Fig. 8,
simulated point-clouds are far cleaner than those in the real
world, which are noisy and perhaps more importantly, partial.
The real-world point-clouds often have portions missing due

Fig. 8: Visualization of Sim and Real point-clouds: We visualize
point-clouds of the Bins and Shelf task in sim and real, in the same
poses. Due to noise in depth sensing, the real world point-clouds
have significantly more deformations, yet our policy generalizes
well to these tasks.

to camera coverage as for large objects it is challenging
to cover the scene well while remaining within the depth
camera operating range. However, we find that our policy is
still able to able operate well in these scenes, as PointNet++
is capable of handling partial point-clouds and is trained on
a diverse dataset containing many variations of boxes and
shelves with different types and number of components as
well as sizes, which may enable the policy to generalize to
partial boxes and shelves observed in the real world.

(a) Bins Scene 1 (b) Bins Scene 2 (c) Bins Scene 3 (d) Bins Scene 4

(e) Shelf Scene 1 (f) Shelf Scene 2 (g) Shelf Scene 3 (h) Shelf Scene 4

(i) Articulated Scene 1 (j) Articulated Scene 2 (k) Articulated Scene 3 (l) Articulated Scene 4

(m) In Hand Object 1 (n) In Hand Object 2 (o) In Hand Object 3 (p) In Hand Object 4

Fig. 9: Images of our 16 evaluation scenes.

